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ABSTRACT

A turbulent film condensation problem was formulated. The physical
model and simplifying assumptions are the same as those of Nusseltfs original
investigation, with the exception of including the turbulent transports. The
result agrees with the qualitative results both of Seban and Leé, but does not

agree totally with Duckler.

R. L. ADAMCZAK, Chief

Fluid & Lubricant Materials Branch
Nonmetallic Materials Division

AF Materials Laboratory
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INTRODUCTION

In comparison to the Nusselt's original laminar film condensation theory
(10), the higher heat transfer coefficient observed for the fluids of moderate
and high Prandtl number and the lower heat transfer coefficient associated with
fluids of small Prandtl number lead us to consider the'influence of the turbu-
lent transports in condensation. As the length of a cpndenger plate and/or £he
rate of the heat transfer (con&ensation) become large, the thickness of tho con-
dénsate film is also iﬁcreased considerably, Consequéntiy, in view of the know-
ledge of fluid mechaniés, for a thicker condensate film i£ ié not unreasonable
to conjecture that'the transports of momentum and heat energy'are likely subject
to the turbulent mechanism in addition to what is essentially molecular in nature.

Needless to say, the actual rationallapproach to this sort of.problem
presents a serious dilemma due to the fact that we haﬁe no£ yet conquered the
deadlock difficulty of the turbulent proﬁlem in its bwn right. In other words,
the appearance of the Reynolds (turbulent) shear gtress has been the source of
.distress in the field of turbulent theory; however, the most practical solution
has been the phenomenological approach in which the analogy to the random mole-
| cular motion plays an essential role with fhe aid of a Judiciously selected eddy
diffusivity. .

In the past, féw attemps have been made in this direction by Seban (12),
Rohsenow et al. (11), and Duckler (35. Seban and Rohsenow et al, simply adopted
the well-known‘piece meal logarithmic velocity profiles of the bounded flow
for the velocity distribution within the condensate film. With the additional

assumption of eddy thermal conductivity being edual to the eddy viscosity, they

carried out the heat transfer analysis by a crude analytical method. In view
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of the recent work by Lae (6), it is now clear that the use of the logarithmic
velocity profile is valid only in the case of a positively larse interfacial
shear stress. Recently Duckler contemplated a more ambitious prosram of actu-
ally solving for the velocity distribution within the condensate film using the
eddy viscosity exoressions of Deissler and von Karman., However, his velocity
distribution suffers from the traditional physical inconsistencies of being dis-
continuous at the intersection of two recions and nonsymmetric (for zero inter-
facial shear stress) a£ the center in the velocity gradient. }Moreover, the in-
terfacial shear stress is not satisfied correctly for the non-varnishing values.
I'urthermore, Duckler seeminsgly forgbt the salient fact that the heat transfer
aspect of the film condensation problem is two-dimensional in nature, in the ab-
sence of a similarity transformation.

Lee (5) has recently studied the solubility of the equations of moﬁion
arising from the Deissler and von Karman eddy viscosities and concluded that a

continuous velocity distribution, at least up to the first derivative, can be

obtained with an arbitrary interfacial shear stress. This allows us to eliminate

the forementioned objections on the velocity distribution within the condensate
film with the desired interfacial shear stress being faithfully satisfied.

The nurvose of this paper is to apply the correct solution for the velocity

distribution to a film condensation problem for which the interfacial shear stress

vanishes. Obviously, a problem defyinz the similarity transformation is more
involved than it appears to be, due to the mundane fact that we must maintain
the riporosness of two dimensional formulation.

Tn retrospect, the general consensus of the experimenters is that a more

reliable measurement of the temperature drop across the condensate {ilm can be
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observed when the thickness of film becomes large. Certainly, the temperature
dro) across the condensate film is one of the most sensitive parameters which
sravely influence the reliability of the condensation heat transfer data, and
any exveriments worthy of notice should include such a measurement. However,
as the thickness of the condensate film grows, it can no longer be described
adequately by the naivé Nusselt's laminar film theory, thus presenting the need

for the study of a turbulent film condensation problem.

FORMULATION OF PROBLEM-:

Consider a physical model of film wise condensation on a vertical semi-
infinite plate, where the x-axls is parallel and the y-axis is perpendicular
to the plate, as shown in Figure 1. If the cold plate is held at an uniform
temperature Ty, which is lower than that of the saturated pure vapor Ts, the
vapor will form a condensate film. As an initial investigation, let us restrict
ourselves to the physical model that was originally adopted by Nusselt. .That,
is, assﬁme the following: (i) consider only the balance of acceleration due %o
gravity and retardation due to drag on the plate in the equation of motion, (ii)
neglect the inertia effect and the interfacial sheer stress at the outer edge
of the condensate film, (iii) cénsider the conduction type mechanism of heat
energy transport is dominant in the heat energy equation, and (iv) nepglect the
convective heat transfer and subcooling in the condensate film, lowever, we do
differ from the original Nusselt's formulation by adding the effect of a turbu-
lent transport in ths form of eddy diffusity. |

Under the condition for which the above stipulations are faithfully satis-
fied, we can write tie following equations of motion and heat energy within the

condensate film. O° course, the usual assumption of the constancy of the physi-
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Al

cal properties within the range of temperature involved is evoked:

(1) (V +Vy) — = g(5-7)
oY
~ 2T °oT
(2) (K + K (0,y) — -K(——-)
r- 34 oY /o

where g = g' (&P/P), and ¥V and X denote the eddy viscosity and thermal
conductivity whose explicit functional forms are yet to be specified.
In principle, the above equations can be solved for the velocity and tem-

perature distributions in the condensate film which are consistent with follow-

u =9 }
T TW aty

T =14 at y

ing boundary conditions:

0 and for x 2 0

1l

(1 4

§ and for x 2 0
However, one immediately notices the ubiquitous appearance of § in the system
of equations, which can only be known as a result of analysis. In order to
define the a priori undetermined §, we let ¥y » § in equation 2 to obtain the
total heat energy transport in the condensate film, that is:
~ oT oT

(K +x<u,y)>5(__)- K(—-—)
(3) 2y /g ov /o
The growth of condensate film thicknes§ & , which depends not only on the

hydrodynamics but on the phase change (condensation phenomena), can be described

by equation 3 if one introduced the following interfacial condition, viz.:

~ oT
(4) (K *K(u,y))s( ) .20 f‘u dy
Yy s _Cp ox VYO

Substitution of equation 4 into 3 gives
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N § oT
(5) -———3—fudy - x(— =0
Cp 2x Y0 oy

Fquations 1, 2, and 5 constitute the system of equations we wish to
study. Clearly, they are reducible to the original Nusselt's laminar problem,
if ¥ and K were not present. One can also show (7?) that the above set of
equations could have been derived rigorously from the standard boundary-layer
approximation, if the forgmentioned simplifying assumptions are proporly ap-
vlied.

For the eddy viscosity, we shall use the following expressions:

Deissler's,near the plate (2):

(%) Y (u,y) = nzuy [l-exp(-nzuy/v )] ,06y&y , and

von Karman's, away from the plate (13):

@D S - 2] 2D ey
o (22 / 2y2 )2

where n and K are the empirical constants. The region of Deissler and von
Karman are separated at y* which, in fact, is the third disposable constant.
For the tube flow, Deissler suggested the value of y* = QGW/U in
connection with the asymptotic logarithmic profile;however,a slight diff-
erent value of y* should be used here so that the asymptotic logarithmic

profile is preserved for a larpge positive interfacial shear stress (5, 6),
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SOME MANTPULATIONS

Dbl s T bt N rm e st

Let us accept the additional simplifying assumption that'the eddy

thermal conductivity is a constant multiple of eddy viscosity (for ex-

T e agbe

ample, unit), then equations 1, 2, and 5 must hold for both regions
referred to in equations & and 7. Since P(u,y) vanishes at the wall we

can from equation 1 derive the value of the parameter y* =CV //g§ (where

C is a numerical value), which demarcates the ranges of equations 6 and 7. ]

Along the distance of a plate, i.e., x-axis, the precise value of y* can

not be assigned ab initio, due to its dependency on § . Nonetheless, only

e i e v 3 Rl

two cases can exist, depending on the value of § for a certain fixed value '{

of x; that is, §& y* and §»y*,

Case T .. § & y*

Physically speaking for this case the transnort mechanism in the con-
densate film is mildly turbulént, i.e., the so-called sublayer and buffer

regions, The differential equations for the velocity and temperature dis-

tributions can be obtained from equations 1, 2, and A, viz.:

28y (e/o)8-y) |
(8) - , S e y*

oy 1+ ((n2/v)u y (1-exp (- n2upy/v ))

o . (a1 /ay)
(Q) - ° » S L y*

? 1+ (/) Ppuy ¥ [1 - exp(-nPuyy/ v )]

g

};L';.';J'.\ ST - .

EXMRE

S

where the velocity distribution in the Deissler's region is denoted by u ,

With the initial condition of u = 0 at y = 0, equation 8 presents no
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difficulty in the numerical treatment, even though it does not render it-
self to an analytical solution in a closed form. For the temperature distri-

bution, equation 9 can be integrated at once in y to give:

T 1 /:r dy
(10) AT I, o 1+ P‘r(nz/\) uyy [1 - exp(-n2u1y/t) )]

& dy

where AT =T, . '1'W anq I = _ .
o 1+ Pu(n?/y Juyy [1 - exp('-n"’uly/ » )]
To obtain the unique velocity and temperature distributions, we must
evoke the physical phenomena of a condensation process. This can be done by

applying the Leibnitz rule to equation 5 to yield an alternate form:

(11) [‘[‘(%;- dy +u(8)] as . Cpv (2),

dx P A \ay

The integrand on the left hand side of the above equation can now be ohtained
from equation 8 vylth the help of an assumption for the 1nterchangablhty of
the dlfferentlal with respect to y and § , that is:

/) {[1+ @29 gy (1 - expl-nuay/ )]
(12) a7, - (n2/v }(§-y )y [1 + ((n2/v Jugy - 1) exp(-n2uyy/ v )] v

}

2y [1 + (2/v Jupy (1 - exp(-n2uyy/v )] 2

> = /
where V1 3u1,3$ .
Therefore, one must now solve equations 8, 10, 11, and 12 simultaneously to
obtain u (x, y), T (x, y), and &(x).

Cage II .. 8>v*

For this case, we must consider two regions described by the different

eddy viscosity formulas; namely, equations 6 and 7, adjoining at y=y*. The
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ecuation of motion valid for 0 € y € y* is identical (o Lim nrevious ecua-
tion 8; however, for y* & y € §,the differential equation must now be obtained

from equations 1 and 7. Let us denote the velocity distrilutions

in the Deissler and von Karman regions Ly u1 and u_, respeclively; ws then
“

bave:r
ry (e/v)X(§-3)
(13) 1 - - ’ 0 & y ¢ y*
'3 1+ (0%/v Juyy [1 - exp(-n2uyy/v )]
and
2 | |
2%uy - (KJ/V )(2uy/2y )2
(14) . 2 s Y eyes

3}’2 _/(8/9)(3- y) - 2u/ay

In obtaining equatiop 14, the assumptions of auz/zy > 0 and a?\lZ/ayZ €0
were tacitly evoked. Therefore, one must solve equation 13 and !4 to obtain
" a va tocity distribution within the .condensate film, which has the Jdesiderata
of‘continuity and symnetry in velocity gradienvt.
The temperature distribution can also be found by intesratins equation 2

with the aid of equations 6 and 7, thus:

T-Ty 1 jy v
(15) AT I, 7o 14P, $(u,y)/v

$§ a
Yy ~
where 12 = I , for which ¥ (u, y) takes the different
‘o 1+ P.¥(u,y) /v

forms given by equations 6 and ? depending on the value of y.
The corresponding integrand expressions, appearine in eaquation 11, must be

derived from equations 13 and 14, respectively:
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10

(g/v ){ [1 + (1}2/1) uiy (1 - exp(—nzuﬁ/o ))J

(16)
>y - (0®/v)(8-3 )y [1+ (/v oy - 1) exp(-nPuyy/v )] Yy}
Y '
[1+ (02/v )y (1 - exp(-nPuyy/ v))] 2
and ,067y % y*_
2
X g aup] (augy (dV2y 1pup\TE  3V2
(17) ~={2 [ (s-p) - ] -2 [2 - ]
*V; ./'17{ [” Ay (ay)éy) 2(33'“' 3y}
° 2y 13/2
[";"(5—}')—;-;-- ,y*‘y‘&
where V, = aul/as and V, = du,/28 . As before, the expression for

8§ (x) can be derived from equation 11 with the properly defined functions

connecting continuously at y = y*.

METIHOD OF SOLUTION

A1l the equations developed in the previous section are too cumbersome
to be treated analytically; therefore, one must take a recourse to the numer-
jcal method, For either case, the temperature function appearing in equation

11 can be eliminated by substituting either equation 10 or 15 to yield:

6 ds (€, aT /A)v
(18) [ ]v1,2 dy + u1’2($ ) ] Lo — = P

o dx Pr

where the subscript 1 or 2 corresponds to cases I or II, respectively.
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Thus, in essence, the mathematical statement of the problem is to find

- a solution of the above first order differential equation, i.e.,ci&/dx =

F(8),with the initial condition of §= 0 at x = 0. As can easily been seen,

the subtle complication arises from the fact that F(§) must be found rigor-

ously by solving the equation of motion,

From the numerical standpoint, the following scheme was adopted for con-

veniency: (i) Integrate equation 18 to obtain,

(CPAT /A) v x

§ § '
(19) f [fvl,2 dy + u1’2(8) ] 11’2 dd =
o) o

(s Pr
(i1) For a given value of §, the integrénd of the above can be. evaluated
uniquely from either equations 8 and 12, or equations 13, 14, 16; and 17,
depending on thenvalue of y*. Having evaluated the integrand for the pre-
assigned, arbitrarily small, interval of § , the left hand side of equation
19 éan then be computed numerically. (iii) For each § ’ é corresponding value
of x can be found from the equality, provided the value of parameters, (C AT/
R)O/b . 1is spe01f1ed. (iv) However, in reality we are seeking the value of
$ for a regular interval of X, instead: This can easily be done by the use
of an interpolation for the fixed x interval with suffiéient accuracy. This
sort of numerical technique seems to be quite amenable from the fact that the
differential equation is of separable type,

Let us now briefly return to the discussion of‘evaluating the integrand
of equatioﬁ 19 from the equations of motion. For case I, no difficulty arises

on account of the regular behavior of equation 8 and 12 within the entire

range, 0¢ ys8<y*, For case II, the velocity distribution must be described
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by équations 13 and 14, and the V1,2 by equations 16 aAnd 17.

For the velocity distribution within 0 € y € y*, equation 13 can be solved
numerically with the initial condition of u1 =0 at y = 0. However, within
the range of y* ¢ y € §, equation 14 is expressed into a corresponding system

of first order differential equations as:

Iy
(20) = P
i Fevie s
’ b y
2P - (x//v ) P?
(21) 2y Ke/v)NSs-y)-p

Usually the system of two first order differential equations can satisfy
only two initiai (or boundary) conditions. Fortunately, due to the singularity
of equation 21 at y =§ being a nodal point, it has been shown that the follow-

ing thraee necessary' conditions can be fulfilled (5):

(1) u, = at y = y* (continuity)
(1i) P = ‘bul/a;y at y = y* (smoothness)
(ii1) P =0 at y = § (symmetry)

Thus, the exact solution is continuous up to the first derivative at y = y*,

and has a vanishing gradient at y =& . Therefore, the traditional physical

inconsistencies on the velocity distribution are now removed in toto.

Similarly, the V1 » must be evaluated by equations 16 and 17. Again for

bt J
0 &€ y & y*, the solution for equation 16 offers no mathematical handicap.
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13

On the other hand for y* € y € §, equation 17 can be expressed as a corre-

sponding system of first order equations, as:

2V

(22)
%4

':Y*'Y‘s

" aQ (&0 M 2 [(e/v ) §-3)-P]R - FP(e/v) = q)/2}
23 —_— = r -
ey

[e/v)(8-5)-p] 3/2

The singular behavior of equation 21 is preserved in equation 23 also, thus

allowing us to satisfy the following three boundary conditons:

(1) V=V, at y = y*
(i1) Q= avl/'ay at y = y*
(ii1) Q= glu aty = §

As shown in the Appendix, equation 23 has the point y =§ as a singular nodal
point so that the family of solutions, Q, converges to g/v as y+»§ .

Having obtainéd the solution for §(x) and u (x, y), the temperature dis-
tribution T (x, y) can be computed from equation 10 or 15. Therefore, the

solution of the simultaneous equations describing the turbulent film condensa-

tion is corpleted.
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14

HEAT TRANSFER RRESULTS

Even though the velocity and temperature distributions within the
condensate t'ilm and the corresnonding film thickness are the fundamental
functions describing the condensation phenomena, it has been the accepted
practice in the past té express it in termé of the auxiliary parameters,
such as, Nusselt and Reynolds numbers. The obvious reason is that the actual
measurement of the steep velocity and temperature distributions within an
extremely thin condensate filmris hopelessly unyielding; but the overall
description of a condensation process can be made via the heat transfer
coefficient and flow rate, which renderlthemselves to experimental confir-

mation.

The usual definition of condensation heat transfer coefficient is obtained

from the following relationship:

(24) H = h AT = k(27 / dY )o

Thus from equations 10 or 15

k 2T k
(25) h = )' —_
aT My

5,2

This can be compared with the laminar film heat transfer coefficient:

(26) ho = k /&,

vhere the subscript o refers to Nusselt's laminar problem and
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(27) So = U ar/a) x /b, <g/vz)] 1/

Therefore, if the Nusselt number is defined as Nu = hL/k, the ratio of
actual Husselt number to that of Nusselt's laminar case becomes, from equa-

tions 25 and 26: '

(28) Nu /Ny, = b0/ 11,2

From the velocity distribution, the corresponding ratio of flow rates, which

s
is defined as " =p I u dy, can be expressed as:
(-]

$
(29) /T -];u dy/ (e/v) 82 /3

iiven thoush the expressions like equations 28 and 29 are quite instrumental
for the case of similarity (see Ref. 1, 4, 7), they are not racommended in
our problem because the ratios vary along the x-axis (plate 1ength). Conse-
quently, the value of x must be treated as another parameter, which would
then defly the generality of the correslation scheme.

To circumvent this inconvenienCe, let us introduce the following para-

meters, Reynolds number and the average heat transfer coefficient, defined as:

5
Re, = LI = (4 d '
(30) ey, /4 - /0)4 wdy|

and

T ASRCN-63-33
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1/3 L
(31) e g e = M [ e/ 1,
[

Jith a naravolic velocity distribution and linear temperature distiibution

of Nusselt's laminar problem, the following relationship exists:

(32) (v/e)3 bhay/k = 1.7 Rep M3

DISCUSSION

For a wide range of values for P, and C'pAT/x~ , u (x, y), T'(x, ¥),
and §(x) were computed numerically using L = 15 cm and V¥ = 0.005 cmz/sec
(a median value for water and liquid metals). In view of the previous in-
vestigation (5), the appropriate numerical values for n = 0,124, K = 0.4,
and y* = 23 v /[fgS were adopted here such that the asymptotic logarithmic
velocity profile is preserved for a positive, huge interfacial shear stress.

The actual turbulent film thickness, 8(x), was plotted in Figure 2 for

two widely differing values of Pr$ and the comparison was made with the corres-

ponding laminar case.ao(x). For Pyr = 1,0, the turbulent film thickness
deviates from the laminar case insignificantly because of §« y*; however, for
P. = 0.001, the condition of § » y* prevails for most of xX. Therefore, the
turbulent film thickness is much larger than. SO(X) due to the turbulent

mixing. Nonetheless, the presence of turbulent transporﬁs contributes to the
general increase of the film thickness for all cases. Qualitative information

can be deduced by simply letting'8~Cx1/4: then we have y*a.C“l/z X -1/8 (where
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¢ has a numerical value), For P. =1.0, C is small and y* lies above the

8 (x) as shown in Figure 3 (a)., On the other hand, for Pr = 0,001 a larger

value of §(x) (or C) results in a small ¥" which then lies below §(x),as in

Figure 3(b). Crudely speaking, y* separates the condensate film into the

so-called sublayer-buffer region and turbulent core region., In the former

region, the influence of the Deissler's eddy viscosity is rather unnotice-

able; however, in the latter region, the turbulent mixing caused by the von

Karman's eddy viscosity increases the film thiékness enormously. This will

in turn decrease the value of ¥* in the reciprocél relationship. Therefore,

it is more appropriate to interprete the two cases of Figure 2 as the differ-

ence in the controlling regions, §<y* op 5>y* srather than in the Pr values,

Some typical velocity and temperature distributions for CpAT/)\ = 0,04

and x = 15 cm are presented in Fipures 4 and 5. In Figure 4 for P. = 10 ang

1, the milder influence of turbulent transports is manifested by the nearly

parabolic profile; but as Py decreases, the inclusion of the von Karman re-

gilon gives rise to a flatter velocity profile due to the violent turbulent

mixing. In contrast to the previous attempts (3, 11, 12)*, one must note

that the present analysis yields a velocity distribution whose gradient not
only is continuous across the film thickness but also vanishes at the outer

2dpe of the film.

The corresponding temperature distributions are shown in Figure 5, for

* We shall not repeat the discussion on the velocity profile for a turbulent

film flow because it has already been presented elsewhere (6), in which the

works of ref. (3, 11, 12) are carefully serutinized,
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which the general trend with respect to P follows what has already been
expounded qualitatively in the previous works (8, 12). That is, as the
value of P, becomes small, the magnitude of molecular thermal conductivity
is dominant and moreover, far from being overshadowed by the eddy thermal
conductivity. Thus, the linearity of the temperature profile is preserved in
the limit. For Pp = 10 and 1, the temperature profile is convex over the dia-
gonal (linear pfofile)f however, as P, decreases, the temperature distribution
twists around the diagonal and finally coincides closely with the linear pro-
file for P, = 0.001.

For the reason mentioned in the previqus section, we shall not present
the condensation result in terms of Nu/Nug and FVI"O, as given by equations
28 and 29. Ilowever, the correlation of the average heat transfer coefficient
and Reynolds number has been .adopted for our work, and the Figure 6 contains

the result of computation fog a wide variation of P.. For Pr 2 0.1, the aver-

age heat transfer coefficient is larger than that of the laminar case, but a
decrease is observed for smaller values 6f,Pr. It seems apparent that the aver-
age heat transfer coefficient approaches the asymptote as P becomes vanishing-
ly small. The result of Figure 6 generally agrees with the qualitative study
of Seban (12), and the discrepancy is mainly attributed to the approx;mate
use of asymptotic ldgarithmic velocity profile and the subsequent analytical
treatment.

On the other hand, there is a legitimate ground for expecting to sece a
rather closer agreement with Duckler's no interfacial shear stress case, be-
cause we not only have the same physical model but also use identical eddy

viscosity expressions. At most, however, there can be a minor degree ol dis-
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AW

agreement arising frem the difference in computing the velocity distribution;
namely, bhat of exact and approximate methods as discussed in ref. (4). Figure
7, containing the results of no interfacial shear stress, was taken from Duck-
ler's paper, in which the curve for Pr = 0.05 was included. In conformity
with the results of SeSan and this work, the average heat transfer coefficient

is greater than the laminar case for P, % 1, However, as P, bscomes smaller,

SRy

the decrease of the average heat transfer coefficient is ekceedingly drastic
so that there appears to be no limit as Pp approaches zefo. A definite com- ;y
parison was made by carfying out the computation for the set of parameters »
used by Duckler. The result of computation is shown for comparison in Figure ’3‘
7 with n = 0.1, K = 0.4, and y* = 20 v/ fgg . Clearly, for Pp %1, the diver- |
gence is not so gritical; however, for the smaller values of Pr’ Duckler's
curves not only have no similarity to the exact result but also decrease withi
out limit. Sinqe Duckler's P. = 0.05 curve passes through the aggregate
of liquid metals data (9), the unexplainable lowering of the average heat
transfer coefficient for liquid metals condensation was once considered as
being caused by the unaccounted turbulent effect. Unfortunately, in light

of the above discussion, such a conclusion does not seem readily acceptable,
The dramatic discrepancy is obviously caused by the aberrant analysis’of
Duckler, in which the two dimensional feature of the condensation problem

was not taken into account rigorously and the neglect of the molecular
thermal conductivity in comparison to the eddy thermal conductivity was

not justified. Indeed, the latter is the prime contributor to the verit-

able fact that the Duckler's heat transfer coefficient is wmuch smaller

than the exact result, because the molecular thermal conductivity is far

superior to the eddy thermal conductivity as Py decreases.
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With hope of clarifying the notorious source of inconsistently small

heat transfer coefficients observed in liquid metals condensation, the ori-

ginal Nusselt's problem was modified to include the effect of turbulent trans-

ports.

The following conclusions can be deduced:

i)

ii)

1i1)

iv)

v)

TM ASRCN-63-33

The thickness of turbulent condensate film is always larger
than that of the laminar case;

The eddy Viscosity tends to flatten the velocity distribution
in the turbulent core region, yet the parabolic profile is ob-
served for the sublayer-buffer region;

For a large P., the temperature distribution becomes convex
over the diagonal, which indicates the violent mixing within

the condensate film; howevér, essentially linear distribution

is observed for a smaller P, in which case the molecular ther-l
mal conductivity is still dominant;

The heat transfer result of the present investigation aprees
with the qualitative studies of hoth Seban and Lee, but a con-
siderable amount of disagreement is observed with Duckler's
works; and

The reported liquid metals condensation data of Misra and Bonj L.
la is still lower than the present theorgy, in contrast to Duck-

lerts claim.
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Appendix

SINGULAR BEHAVIOR OF EQUATIONS 19 AND 21

With the= choice of the dimensionless coordinates n=y/s , y-= P/(g§/v),

and 4 = Q/(g/v), equations 19 and 21 can be reduced to the following dimen-

sionless forms:

(A—]) d? -CYZ
dq Jr-q)-¥

i) ¥ -c{2 [(-m) -¥] ¥4 - y2(1-4)/2)
dn

[(1-n)-¥]Y?

where C = KJ/;—;§ lv .

The poda] simrular behavior of equation A-1 was investigated previously
by a pgraphical method (5), We shall here develop an analytical expression
foryat M= 1, which can, in turn, be useful for the study of equation A-2 at
the singular point. The singular point can be brought into the origin by

letting €= 1 -, in equations A-1 and A-2:
q

d+y c y?
(A-3) =

dg /s -y

af c{2(8-¥)¥é - ¥ (1-4)/2}
(A-k) =

as (g -2
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By introducting a new variable w= $-¥, equation A.3 can be transformed into

a more Convenient form:

dw Jw

(A-5) —_— - (w=0at ¥ =0)
dy cy?

For a small value of ¥, a series solution of the above equation can be
2 1 » o . . ' . . Py
developed as = C ‘YJ’ + y from which a solution of equation A-3 in

an inplicit Corm becomes:

(A-6) g - yr + .02,*,4 + ...

As before, the nodal singular behavior at the origin, i.e, =0 at

3 = 0, is repeatedly established.

Since near the origin, the solution A-6 permits us to approximate (3 -\r)

E Cz'f‘h and‘\Vri, equation A-4 can now be simplified as,

i 2c%g5 4. g2 (1-4)p
(R-7) -
s 2 g

or,

¥ _,2[.2. !

1
—_— —_—— .
(A-8) ag 3 ’hc2sh]¢*2cth |

b
For a small value of ¥, 1/¢ « I/lezs » then equation A-8 can be simplified
further:
dg
(A-9) - (-1)

g 2c2¢ b
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N
%ith the introduction of the transformation 6d=4¢ - 1, equation A-9 reduces to:

ag 1 A g
(A—lO) 4 s ” 02 g L ,‘ }

The solution of the above equation ist:

(A-11) 2- ?Qexp(~l/602$3)

wherez, represents the integration constant.

It can be deduced from the solution, A-ll,tﬁat ? = 0 as §+0, which im-
plies g=1 at the origin, This concludes the argument that a solution of
equation A-2 converges to §=1 atM=1, or Q = g/v at y =&, in unison.

The singular nodal behavior of equation 21 in that a family of solutions con-
verges to Q = g/yat y =8 can be established, perhaps by a an isocline study as

was done for the case of equation 19 (5). 5]
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Notations

specific heat at constant pressure
function

g' (AP /e )

acceleration due to gravity

amount of heat transferred
condensation heat transfer coefficient
integral (see equations 10 and 15)
von Karman's constant

absolute thermal conductivity
plate length

Deissler's constant

2u/dy

Prandtl number ( v /&)

2V/ 2y

Reynolds number at x = L
temparature

Ts - Tw

veloeity component in x-axis
2u/28

coordinate system

separation of Deissler and von Karman regions




RS

Greeks
I flow rate
$ condensate film thickness
Li /8
K thermal conductivity (k/ Cof)
A laten heat vaporization
M absolute viscosity
v kinematic viscosity
s -
P density
ap density of liquid - density of vapor
T shear stress
4 o/ (g/w )
4 g -1
v P/(g8/v)
w S - V¥
subseripts
av average over x
o Nusselt's laminar case
s saturation
W ’ wall
overscore
~ turbulent property
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